
Yarmouk Private University

Faculty of Informatics and Communications Engineering

Department of Communication and Information Engineering

Building Distributed System to

Handle Data in Internet of

Things Applications

Senior Project Report

Prepared by:

Ammar Al-Madi Mohamed Abdullah

MHD. Manar Buz Aljedy

Dr. Mohamed Khaled Chahine Dr. Wassim Al-Juneidi

Eng. Rami Abbas

Second Semester

2020-2021

Supervisor

i

Abstract

The advent of Internet of Things (IoT) has kindled the possibility of umpteen number of

challenges. One of the major challenges in the realization of IoT applications is interoperability

among various IoT entities. Thus, the need for a new architecture comprising of smart control

and a number of common systems have been identified by researchers. Our goal is in this project

design a collaborative model and an architecture to take advantage of the available computing

resources. The main challenge is to manage and maintain large number of devices and react

smartly according to the data generated by them. So, we suggest the following a system based

on IoT, with Internet Information Services (IIS) for setting up web servers, an ASP.NET model

- view - controller (MVC) for establishing a remote, monitoring and control system by using

web browser or mobile application and a Microsoft SQL Server as the database with the web

browser connected to the Internet, where the sensor devices acquire the data and a send it to the

server that performs the hard processing, the sensing data sent to the server by using the TCP/IP

protocol, the users can provide instructions immediately without being present to check the

conditions, which considerably reduces labor and time costs. This approach can be used in a

diversity of real applications running in different environments under different conditions

where a set of computing systems are available.

ii

Arabic Abstract

 هوة التحديات الرئيسيهذه أحد ، التحديات ى من ص ية وجود عدد لايح ار إمكانشياء أثرنت الأإنتظهور

بين مختلف التواف تحقيق بنيةرنت الأشياء إنت ومنظومات تطبيقات ق الى تتألف من وهذا يحتاج جديدة

صميم مشروع هو تا الهدفنا في هذ و ين ث الباحقبل تحديدها من يتمالمشتركة الانظمةعدد من متحكم ذكي و

موامشترك وبنية وذجنم جميع من للاستفادة ال المتاحة الحوسبة رد ة إدار هدفويكون هو ةالرئيسي

العديد المعلومات نق، ةالقادمة من الاجهزة التالي ترحلذالك إنترنت الأشياء مع النظام يعتمد على الذي

نظام تحكم أنشاء من اجل ط صفحات الخادم النش نموذج و ويب مخدمات لبناء ومات الإنترنت خادمات معل

الهاتف المحمول الويب أو باستخدام متصفح البيانات حيث تحصل بعن بعد ومراقبة الى قاعدة اضافة

ات ومعلعمليات المعالجة الصعبة، المذي يقوم بسالها الى الخادم الإرتقوم بأجهزة الاستشعار على البيانات و

دون الحاجة بشكل مباشر ستخدم التحكميستطيع الموكم بالنقل، وكول التحبروتخادم تستخدم لالى االمرسلة

، يمكن استخدام هذا المنهج في مجموعة التكاليف والوقت من بشكل كبير لل مما يققرب النظام للتواجد

جموعة من انظمة ظروف مختلفة حيث تتوافر مل ظ يئات مختلفة في متنوعة من التطبيقات التي تعمل في ب

 الحوسبة.

iii

Acknowledgment

It has been a great opportunity to gain lots of experience in real time projects, followed by the

knowledge of how to actually design and analyze real projects. For that we want to thank all

the people who made it possible for students like us. Special thanks to the graduation Project

Unit for the efforts they did to provide us with all useful information and making the path clear

for the students to implement all the education periods in real-time project design and analysis.

Furthermore, we all the professors and visiting industry for the interesting lectures they

presented which had great benefit for all of us. We would like to express our deepest gratitude

to our graduation project supervisor Dr. Wassim Juneidi for his patience and guidance along the

semester. In addition, we would like to express our sincere appreciations to Our department

head and graduation project coordinator Dr. Mohamed Khaled Chahine for his guidance,

continuous encouragement and support. Moreover, it is our duty to thank all the testing

committee members for their generous discussions and encouragement.

iv

List of Contents

Abstract .. i

Arabic Abstract .. ii

Acknowledgment ... iii

List of Contents .. iv

List of Figures: ... vi

List of Tables: ... vii

List of Abbreviations ... viii

Chapter One Theoretical Study .. 1

1.1 Problem Description and Formulation ... 2

1.2 Project Summary .. 3

1.3 Concept of the System and Related Technologies .. 5

1.3.1 ASP.NET MVC architecture ... 5

1.3.2 Relational Database.. 6

1.4 Distributed Systems .. 6

1.4.1 Distribution of State and Behavior ... 6

1.4.2 Client/Server Model ... 8

1.5 Remoting System ... 10

1.5.1 Overview ... 10

1.5.2 .NET Remoting ... 10

1.5.3 Advantages of .NET Remoting .. 11

1.6 Windows Communication Foundation ... 15

1.6.1 WCF ─ Overview ... 15

1.6.2 Fundamental Concepts of WCF.. 15

1.6.3 WCF Features ... 17

1.6.4 Advantages of WCF ... 17

1.6.5 WCF ─ Architecture .. 18

1.7 Internet of Things ... 21

1.7.1 IoT-Key Features.. 22

1.7.2 IoT-Advantages .. 23

1.7.4 IoT-Disadvantages .. 23

v

1.7.5 IoT Networking .. 24

Chapter Two Practical Implementation ... 26

2.1 Introduction ... 27

2.2 System Overview ... 28

2.3 Internet of Things System .. 29

2.3.1 Smart System Components ... 30

2.3.2 CCTV System ... 35

2.4 MVC Application .. 36

2.4.1 Adding MVC support to a Web project ... 39

2.4.2 Add a Controller... 40

2.5 Remoting System Component .. 42

2.6 Creating a View ... 45

2.7 WCF Architecture .. 47

2.8 Create a Database ... 51

2.9 Login Page ... 55

Chapter Three Secure ASP.NET .. 56

3.1 Introduction ... 57

3.2 Designing an Authentication and Authorization Strategy .. 58

3.3 Secure Communication .. 59

3.3.1 Browser to Web Server .. 60

3.3.2 Web Server to Remote Application Server .. 63

3.3.3 Application Server to Database Server .. 64

3.4 HTTPS Server on the ESP8266 NodeMCU .. 65

Chapter Four Tests and Results .. 68

4.1 Introduction ... 69

4.2 The Importance of Different Systems ... 69

4.3 Distributed Systems and Internet of Things ... 69

4.4 Why use .NET? ... 70

4.5 Performance .. 71

4.6 Conclusion ... 72

4.7 Future Work .. 72

Reference: .. 74

vi

List of Figures:

Figure 1.1 Architecture of remote monitoring system. [1] ... 4

Figure 1.2 MVC architecture.[2]. .. 5

Figure 1.3 Life cycle of an MVC. [2]. .. 5

Figure 1.4 The NET Remoting architecture. [4]. ... 12

Figure 1.5 WCF Contracts architecture. [6]. ... 18

Figure 1.6 WCF Service Runtime architecture. [6]. .. 19

Figure 1.7 WCF Messaging architecture. [6]. .. 20

Figure 1.8 WCF Activation and Hosting architecture. [6]. .. 21

Figure 2.1 System Block Diagrams ... 28

Figure 2.2 ESP8266 Node MCU Module .. 30

Figure 2.3 Temperature – Humidity (DHT11) Module .. 32

Figure 2.4 Port Diagram for IoT System ... 32

Figure 2.5 Light System ... 35

Figure 2.6 Raspberry Pi Configuration Tool ... 35

Figure 2.7 CCTV system .. 36

Figure 2.8 Create new project ... 37

Figure 2.9 Create MVC project... 38

Figure 2.10 Simple MVC project .. 38

Figure 2.11 Add new controller ... 40

Figure 2.12 Server Start Screen .. 44

Figure 2.13 Server Screen .. 45

Figure 2.14 Add View ... 46

Figure 2.15 Dashboard Page .. 46

Figure 2.16 Add Website Page .. 49

Figure 2.17 WCFdemo Website .. 50

Figure 2.18 Publish WCF Service Page .. 50

Figure 2.19 Service Reference ... 51

Figure 2.20 Database Diagram .. 52

Figure 2.21 Database Connection string .. 53

Figure 2.22 Database Tables .. 54

Figure 2.23 The Database .. 54

Figure 2.24 Login Page View ... 55

Figure 3.1 Various technologies to secure ASP.NET .. 57

Figure 3.2 Shows how each channel can be secured by using a combination of SSL, IPsec

and RPC encryption. [13]. ... 60

Figure 3.3 Enabling SSL .. 61

Figure 3.4 Project Url ... 62

Figure 3.5 Project Home page ... 62

Figure 3.6 SQL Server Management Studio .. 64

Figure 3.7 Enable windows Authentication ... 65

Figure 4.1 Json.NET Performance. [15]. .. 71

file:///C:/Users/moham/Desktop/تخرج/Building%20Distributed%20System%20to%20Handle%20Data%20in%20Internet%20of%20Things%20Applications.docx%23_Toc78220403
file:///C:/Users/moham/Desktop/تخرج/Building%20Distributed%20System%20to%20Handle%20Data%20in%20Internet%20of%20Things%20Applications.docx%23_Toc78220404

vii

List of Tables:

Table 1.1 Advantages and disadvantages of centralized versus distributed systems. [3]. . 7

Table 2.1 Computer Characteristic .. 37

Table 4.1 Features of ASP.NET and WCF ... 70

viii

 List of Abbreviations

ACLs Access Control List

AJAX Asynchronous JavaScript

API Application Programming Interface

ASP Active Server Methods

ASMX Active Server Pages

CSS Cascading Style Sheets

DLL Dynamic-link library

DOC Distributed Object Computing

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IE Internet Explorer

IoT Internet of Things

IIS Internet Information Services

IP Internet Protocol

IPsec IP Security

JSON JavaScript Object Notation

LPWAN Lower-Power Wide Area Network

MACs Message Authentication Codes

MVC Model View Controller

MSMQ Microsoft Message Queuing

NAT Network Address Translation

OBDC Open Database Connectivity

PHP Hypertext Preprocessor

PRC Galileo Public Regulated Service

REST Representational State Transfer

RMI Remote Method Invocation

RPC Remote Procedure Call

RSI Remote Service Invocation

SHA Secure Hash Algorithm

SSL Secure Sockets Layer

SQL Structured Query Language

SOAP Simple Object Access Protocol

TLS Transport Layer Security

TCP Transmission Control Protocol

URL World Wide Web

URI Uniform Resource Identic

WAN Wide Area Network

WCF Windows Communication Foundation

WEB World Wide Web

WSNs Wireless sensor networks

XML Extensible Markup Language

Chapter One

Theoretical Study

2

1.1 Problem Description and Formulation

Recent applications have been developed around the aforementioned concepts where sensing

and processing capabilities of the devices play an important role. These devices are usually

embedded systems and/or mobile devices such as smart phones, wearables, laptops, tablet PCs,

etc. To deploy complex artificial intelligence applications in IoT environments provides a

powerful driver for increased edge computing capabilities. Real-world use cases of artificial

intelligence combining with the Internet of Things. This evolution promotes a digital

transformation of the society by providing the citizens and professionals with advanced

applications for sensing and analyzing data on the ground. Due to the recent successes and the

anticipated breakthroughs in different fields, it has now become one of the most promising

research areas. Indeed, this fact is largely accelerated by new smartphones and communication

capabilities. However, the design of advanced IoT-based applications remains a challenge.

Handling simultaneous data flows, data processing and/or complex mathematical function

execution could overflow the computing capabilities of the embedded systems and mobile

devices. One approach to overcome this drawback consists in designing a distributed system

where the sensor devices are the distributed part to acquire the data and a centralized

infrastructure that performs the hard processing. The classical client/server architecture has

been designed for that purpose. Currently, this centralized infrastructure is usually deployed in

the Cloud. However, this shift introduces several new risks, and some bottlenecks and delays

may result from the communications among the devices and the centralized system. In

particular, the latter drawback is strongest for multimedia data, for example, in applications that

use video and image acquisition devices. For that reason, it is difficult to implement a

centralized multimedia analysis system in the cloud. To overcome these bottlenecks and delays,

this work extends our recent proposal of a distributed architecture to perform collaborative work

for IoT-based environments and sharing the application workload among the available devices.

This improved architecture takes into account the different network layers and their computing

3

platforms involved, from the remote Cloud servers to connected smart sensors and “things” The

approach aims at optimizing the use of computational resources of an IoT environment while

providing a framework able to obtain data from sensors, perform complex computational tasks

and run advanced applications.

1.2 Project Summary

With the rapid development of the Internet in recent years, Internet-based applications such as

remote monitoring systems are becoming increasingly popular in industry. Through the

boundless Internet, a remote monitoring system allows the user to have remote real-time control

of the situation in a factory by using a smartphone or computer. In the future, factories will have

different types of devices, which will need to be integrated in an intelligent manner. Wireless

sensor networks (WSNs) are the base technology of the Internet of Things (IoT). A WSN is a

network that uses intelligent sensors to transmit and receive data. The applications of WSN

include health, environment, industrial, and traffic monitoring. WSNs have not only contributed

to the development of IoT but also led to the development of devices and technologies that

support the growth of the Internet, such as QR codes, intelligent phones, social networks, and

cloud computing. The open database connectivity (OBDC) method can be used for connecting

and transferring the data, for example through Microsoft SQL Server. The web server must be

established in order to provide a response to the client. Microsoft Internet Information Services

(IIS) is a service for setting up the web server and delivering data to the client in Extensible

Markup Language (XML) format. In recent years, developers have replaced XML with

JavaScript Object Notation (JSON) format to transfer data because JSON is a lightweight data

interchange format that is easy for humans to read and write as well as easy for machines to

parse and generate. JSON increases the decoding speed of a browser and improves the

efficiency of a website. In addition, developers use a model–view–controller (MVC)

architectural pattern to design a website because it provides a way to divide a given application

into three interconnected parts. The MVC design pattern decouples these major components,

4

enabling efficient code reuse and parallel development. A simple application for a remote

monitoring system is a web oscilloscope. The web oscilloscope delivers acquisition data, which

is stored in the database via TCP/IP and simulates a real oscilloscope to enable the user to easily

observe the signal plot of an electrical circuit. Other applications of remote monitoring include

video surveillance, appliance testing, and ocean monitoring. Because several studies have

proposed that the graphical interfaces are more acceptable for users than using numerical tables

as the interface, all these applications are designed with a friendly human machine interface to

enable users to supervise a situation. According to market research of browsers used in

intelligent devices, people use browsers for browsing websites on devices such as smartphones,

tablets, and laptops.

Figure 1.1 Architecture of remote monitoring system. [1]

5

1.3 Concept of the System and Related Technologies

This project is a web application design based on the ASP.NET framework using Visual Studio 2019.

The coding languages used to establish the bridge between the server and client in the MVC structure

were C#, SQL, JavaScript, HTML, and CSS. Some popular libraries, such as Razor and jQuery, and a

common format for transferring data JSON.

1.3.1 ASP.NET MVC architecture

In this study, an MVC architecture was adopted to design the web application for a remote the

IoT system. As shown in figure 2, the developer must divide an application into three types of

components:

• A model stores data that is then retrieved according to commands from the controllers.

It includes business logic and all data used in a project.

• A view presents the data from the controller based on changes in the model.

• A controller decides the data flow and sends commands to the model and view.

Programming languages such as Java, C#, and PHP have popular MVC frameworks that are

used in web application development. In this study, the ASP.NET MVC framework was applied

to a remote the IoT system. The life cycle of an MVC architecture is presented in figure 3. The

entry point for every MVC application is URL routing. After the ASP.NET platform receives

Figure 1.3 Life cycle of an MVC. [2].
Figure 1.2 MVC architecture.[2].

6

a request from a browser, a controller determines how it should be handled. The controller then

determines the view and presents the view through URL routing. [2].

1.3.2 Relational Database

Microsoft SQL Server was adopted as a relational database management system to execute four

basic functions of a database. Using a database to store data acquired with an analog-to-digital

converter and establishing relations among each type of data is a common approach in industrial

systems. To connect the web application to an SQL Server, Entity Framework should be used.

Entity Framework can help a developer to relate the object in their code with a table in the

database. [2].

1.4 Distributed Systems

A distributed system is an information-processing system that contains a number of

independent computers that cooperate with one another over a communications network in

order to achieve a specific objective. This definition pinpoints a number of aspects of distributed

systems. Although the elementary unit of a distributed system is a computer that is networked

with other computers, the computer is autonomous in the way it carries out its actions.

Computers are linked to one another over a communications network that enables an exchange

of messages between computers. The objective of this message exchange is to achieve a

cooperation between computers for the purpose of attaining a common goal. [3].

1.4.1 Distribution of State and Behavior

A physical view of a distributed system describes this technology. It includes computers as

nodes of the communications network along with details about the communications network

itself. In contrast, a logical view of a distributed system highlights the applications aspects. can

7

therefore also be interpreted as a set of cooperating processes. The distribution aspect refers to

the distribution of state (data) and behavior (code) of an application. The process encapsulates

part of the state and part of the behavior of an application, and the application’s semantics are

achieved through the cooperation of several processes. The logical distribution is independent

of the physical one. For example, processes do not necessarily have to be linked over a network

but instead can all be found on one computer. [3].

Advantages

Distributed systems offer a variety of advantages compared to centrally or ganized mainframes.

Decentralization is a more economic option because networked computing systems offer a

better price/performance ratio than mainframe systems. The introduction of redundancy

increases availability when parts of a system fail. Applications that can easily be run

simultaneously also offer benefits in terms of faster performance in relation to centralized

solutions. Distributed systems can be extended through the addition of components, thereby

providing better scalability compared to centralized systems. [3].

Table 1.1 Advantages and disadvantages of centralized versus distributed systems. [3].

Criteria Centralized system Distributed system

Economics low high

Availability low high

Complexity low high

Consistency simple difficult

Scalability poor good

Technology homogenous heterogenous

Security high low

Disadvantages

The advantages offered by distributed systems are also countered by some disadvantages. The

more components in a system, the greater the risk that the rest of the system will suffer unless

8

special measures are taken in the event that one of the components fails. Special mechanisms

are needed to avert these failures and make them transparent to the user. Moreover, the many

components that make up a distributed system are potential sources of failures. Due to the

physical and time separation, consistency (for example, with distributed databases) is more of

a problem than with centralized systems. Leslie Lampert presents a (cynical) alternative

characterization that highlights the complexity of distributed systems. [3].

1.4.2 Client/Server Model

The client/server model introduces two roles that can be assumed by processes: the role of

service (client) and the role of service provider (server). The distribution of roles implies an

asymmetry in the distributed execution of an application. The server offers a service to which

one or more clients has access. Here processes act as natural units in the distribution. In the

context of distributed systems, the communication between client and server can be based on

one of the mechanisms of Remote Procedure Call (RPC) is an example of synchronous request-

oriented communication. The sender sends a request to the receiver and is passive until the

receiver delivers the results of the request. An example of asynchronous request-oriented

communication is Remote Service Invocation (RSI). During this type of communication, the

sender remains active while the receiver is processing the request. Although RSI makes better

use of the parallelism offered in distributed systems, RPC is based on popular programming

paradigms and is therefore intuitive in its interpretation. The RPC introduced in the last section

offers a fundamental communication mechanism for client/server interaction. The client is the

initiator of an RPC, and the server provides the implementation of the remotely executed

procedure. The request message contains all current input parameters for the procedure call.

Conversely, the response message contains all results for the corresponding request produced

by the server. The advantage of using remote procedure call as a communication mechanism

for the client/server model is that it incorporates procedural programming paradigms and is

9

therefore easily understood. The implementation of the procedure is an integral part of the

server, and the invocation of the procedure is part of the application running in the client. [3].

Advantages

An advantage of the client/server model is the intuitive splitting of applications into a client

part and a server part. Based on conventional abstractions such as procedural programming, it

simplifies the design and the development of distributed applications. Over and above this, it

makes it easy to migrate or integrate existing applications into a distributed environment. The

client/server model also makes effective use of resources when a large number of clients are

accessing a high-performance server. Another advantage of the client/server model is the

potential for concurrency. [3].

Disadvantages

From a different point of view, all these advantages could also be considered disadvantages.

For example, the restriction to procedural programming paradigms excludes other approaches

such as functional or declarative programming. Furthermore, even procedural paradigms cannot

always ensure that transparency is maintained between local and remote procedure calls since

transparency can no longer be achieved in the case of radical system failure. The concurrency

mentioned earlier as an advantage can also lead to problems because of its requirement that

processes be synchronized. [3].

10

1.5 Remoting System

1.5.1 Overview

Remoting is the process of programs or components interacting across certain boundaries.

These contexts will normally resemble either different processes or machines. In the .NET

Framework, this technology provides the foundation for distributed applications. The

framework .NET includes .NET Remoting API that support the development of distributed

applications. [1]. This is an extensible Distributed Object Computing (DOC) middleware

infrastructure comparable to the Java Remote Method Invocation (RMI) although the latter

adopts an entirely different internal architecture. Both frameworks allow objects on a client

machine to communicate with remote objects on a server. [4].

1.5.2 .NET Remoting

.NET Remoting simplifies the development of distributed systems by offering an extensible

infrastructure that permits objects that do not reside in the same memory space (or even on the

same host) to communicate with one another in a transparent fashion. This implies that every

message sent to a remote object will have to be delivered through an alternative mechanism.

Therefore, each message from a local (client) object to a remote (server) object will be

intercepted using a (double) proxy pattern. In addition, .NET Remoting gives you a flexible and

extensible framework that allows for different transfer mechanisms (HTTP and TCP are

supported by default), encodings Simple Object Access Protocol (SOAP) and binary come with

the framework), and security settings (Internet Information Services (IIS) Security and SSL

come out of the box). With these options, and the possibility of extending all of them or

providing completely new implementations, .NET Remoting is well suited to distributed

11

applications. You can choose between HTTP-based transport for the Internet or a faster TCP-

based one for LAN applications by literally changing a single line in a configuration file. [5]

1.5.3 Advantages of .NET Remoting

Several different architectures for the development of distributed applications already exist.

You might therefore wonder why .NET introduces another, quite different way of developing

those kinds of applications. One of the major benefits of .NET Remoting is that it’s centralized

around well-known and well-defined standards like HTTP and that it is directly tied to the .NET

Framework and has not been retrofitted later.

Ease of Implementation

With .NET this concept of absolute ease of implementation has been extended to the

development of distributed applications. There are no proxy/stub-compilation cycles. You don’t

have to define your interfaces in a different programming. A unique feature is that you don’t

have to decide up front on the encoding format of remoting requests; instead, you can switch

from a fast TCP transport to HTTP by changing one word in a configuration file. You can even

provide both communication channels for the same objects by adding another line to the

configuration. [4]

Extensible Architecture

.NET Remoting offers the developer and administrator a vastly greater choice of protocols and

formats than any of the former remoting mechanisms. In Figure 8, you can see a simplified

view of the .NET Remoting architecture. Whenever a client application holds a reference to a

remote object, it will be represented by a Transparent Proxy object, which “masquerades” as

the destination object. This proxy will allow all of the target object’s instance methods to be

12

called upon it. Whenever a method call is placed to the proxy, it will be converted into a

message, and the message will pass various layers.

Figure 1.4 The NET Remoting architecture. [4].

The message will pass a serialization layer, the formatter which converts it into a specific

transfer format such as SOAP. The serialized message later reaches a transport channel, which

transfers it to a remote process via a specific protocol like HTTP or TCP. On the server side,

the message also passes a formatting layer, which converts the serialized format back into the

original message and forwards it to the dispatcher. Finally, the dispatcher calls the target

object’s method and passes back the response values through all tiers. [4].

Interface Definitions

.NET Remoting provides several different ways of defining those interfaces, as discussed in the

following sections.

• Shared Assembly

In this case, the server-side object’s implementation exists on the client as well. Only during

instantiation is it determined whether a local object or an object on the remote server will be

created. This method allows for a semitransparent switch between invoking the local

implementation (for example, when working offline) and invoking server-side objects (for

13

example, to make calculations on better-performing servers when connected to the

network).[4].

• Shared Interfaces or Base Objects

When creating a distributed application, you define the base classes or interfaces to your remote

objects in a separated assembly. This assembly is used on both the client and the server. The

real implementation is placed only on the server and is a class that extends the base class or

implements the interface. The advantage is that you have a distinct boundary between the server

and the client application. [4].

• Generated Metadata Assembly

This approach seems to be the most elegant one at first glance. You develop the server in the

same way as when using the shared assemblies method. Instead of really sharing the Dynamic-

link library (DLL) or EXE, you later extract the necessary metadata, which contains the

interface information, using SoapSuds that will either need the URL to a running server or the

name of an assembly as a parameter, and will extract the necessary information (interfaces, base

classes, objects passed by value, and so on). It will put this data into a new assembly, which

can be referenced from the client application. You can then continue to work as if you’d

separated your interfaces right from the beginning. [4].

Marshalling Data

Marshalling is the process of converting a data field, or an entire set of related structures, into

a serialized string that can be sent in a message. To marshall a binary number, one might convert

it to hexadecimal digit string, if the message format must be text. If the message will carry

binary data, the binary number might be converted into 4 little-endian normalized binary bytes

and sent that way. Pointers are harder; one often has to convert them into an abstract reference

(e.g., a "node number") that is independent of the actual memory locations. [5].

14

• Marshal-by-value objects:

These objects are copied and passed by value out of the application domain. When

client calls a method on marshal-by-value-object, the remoting system creates a

copy of this object and passes the copy to the client application domain. The copy

hence received can handle any method call in client domain. Using Marshal-by-

value-object reduces resource consuming trip across network.

• Marshal-by-reference objects:

The clients that use these objects need a proxy to access the object remotely. When

client calls a method on Marshal by reference object, the remoting system create

proxy object in the caller application that contains the reference of all method and

properties of the object.

Serialization of Data

In .NET Remoting the encoding/decoding of objects is natively supported. You just need to

mark such objects with the [Serializable] attribute or implement the interface ISerializable and

the rest will be taken care of by the framework.

The underlying .NET runtime formatting mechanism marshals simple data types and subobjects

(which have to be serializable or exist as remote objects), and even ensures that circular

references will be tracked and transferred correctly. [5].

Multiserver/Multiclient

When you use remote objects (as opposed to using copies of remotely generated objects that

are passed by value), .NET automatically keeps track of where they originated. So a client can

ask one server to create an object and safely pass this as a method’s parameter to another server.

The second server will then directly execute its methods on the first server, without a round trip

through the client. Nevertheless, this also means there has to be a direct way of communication

15

from the second server to the first one—that is, there must not be a firewall in between, or at

least the necessary ports should be opened. [5].

1.6 Windows Communication Foundation

1.6.1 WCF ─ Overview

Windows Communication Foundation (WCF). The elementary feature of WCF is

interoperability. It is one of the latest technologies of Microsoft that is used to build service-

oriented applications. Based on the concept of message-based communication, in which a

Hypertext Transfer Protocol (HTTP) request is represented uniformly, WCF makes it possible

to have a unified Application programming interface (API) irrespective of diverse transport

mechanisms. WCF was released for the first time in 2006 as a part of the .NET framework with

Windows Vista, and then got updated several times. 4.8 (2019) is the most recent version that

is now widely used. A WCF application consists of three components. [6]:

• WCF service.

 • WCF service host.

 • WCF service client.

1.6.2 Fundamental Concepts of WCF

• Message ─ This is a communication unit that comprises of several parts apart from the

body. Message instances are sent as well as received for all types of communication

between the client and the service.

• Endpoint ─ It defines the address where a message is to be sent or received. It also

specifies the communication mechanism to describe how the messages will be sent along

16

with defining the set of messages. A structure of an endpoint comprises of the following

parts:

o Address ─ Address specifies the exact location to receive the messages and is

specified as a Uniform Resource Identifier (URI). It is expressed as

scheme://domain[:port]/[path]

o Binding ─ It defines the way an endpoint communicates. It comprises of some

binding elements that make the infrastructure for communication. For example, a

binding states the protocols used for transport like TCP, HTTP, etc., the format of

message encoding, and the protocols related to security as well as reliability.

o Contracts ─ It is a collection of operations that specifies what functionality the

endpoint exposes to the client. It generally consists of an interface name.

• Hosting ─ Hosting from the viewpoint of WCF refers to the WCF service hosting which

can be done through many available options like self-hosting, Internet Information

Services (IIS) hosting, and WAS hosting.

• Metadata ─ This is a significant concept of WCF, as it facilitates easy interaction

between a client application and a WCF service. Normally, metadata for a WCF service

is generated automatically when enabled, and this is done by inspection of service and

its endpoints.

• WCF Client ─ A client application that gets created for exposing the service operations

in the form of methods is known as a WCF client. This can be hosted by any application,

even the one that does service hosting.

• Channel ─ It is a medium through which a client communicates with a service. Different

types of channels get stacked and are known as Channel Stacks.

• Simple Object Access Protocol (SOAP) ─ It is an Extensible Markup Language (XML)

document comprising of a header and body section. [7].

17

1.6.3 WCF Features

• Service Orientation: one consequence of using Web services (WS) standards is the

WCF enables you to create service-oriented application. service-oriented architectures

(SOA) are the reliance on WEB services to send and receive data.

• Interoperability: WCF implements modern industry standards for Web service

interoperability.

• Multiple Message Patterns: Messages are exchanged in one of several patterns. The

most common pattern is the request/reply pattern, where one endpoint requests data

from a second endpoint such as a one-way message in which a signal endpoint sends a

message without any expectation of reply.

• Data Contracts: Because WCF is built using .Net Framework, it also includes code-

friendly methods of supplying the contracts you want to enforce.

• Security: Messages can be encrypted to protect and you can require users to

authentication themselves before being allowed to receive messages. Security can be

implemented using well-know standers such as Secure Sockets Layer (SSL) or WS-

Secure Conversation.

• Multiple Transports and Encoding: Messages can be sent in any of several built-in

transport protocols and encodings. The most common protocols and encoding is to send

text encoded SOAP messages using is the HTTP for use on the World Wide Web.

Alternatively, WCF allow you to send message over Transmission Control Protocol

(TCP), Named Pipes or Microsoft Message Queuing (MSMQ). [7].

1.6.4 Advantages of WCF

• It is interoperable with respect to other services. This is in sharp contrast to .NET

Remoting in which both the client and the service must have .Net.

18

• WCF services offer enhanced reliability as well as security in comparison to Active

Server Methods (ASMX) web services.

• Implementing the security model and binding change in WCF do not require a major

change in coding. Just a few configuration changes are required to meet the

constraints.

• WCF has built-in logging mechanism whereas in other technologies, it is essential to

do the requisite coding.

• WCF has integrated Asynchronous JavaScript (AJAX) and support for JavaScript

Object Notation (JSON).

• It offers scalability and support for up-coming web service standards.

• It has a default security mechanism which is extremely robust. [6].

1.6.5 WCF ─ Architecture

WCF has a layered architecture that offers ample support for developing various distributed

applications.

Contracts

The contracts layer is just next to the application layer and contains information similar to that

of a real-world contract that specifies the operation of a service and the kind of accessible

information it will make. Contracts are basically of four types discussed below in brief:

Figure 1.5 WCF Contracts architecture. [6].

19

• Service contract: This contract provides information to the client as well as to the outer

world about the offerings of the endpoint, and the protocols to be used in the

communication process.

• Data contract: The data exchanged by a service is defined by a data contract. Both the

client and the service has to be in agreement with the data contract.

• Message contract: A data contract is controlled by a message contract. It primarily does

the customization of the type formatting of the SOAP message parameters. Here, it

should be mentioned that WCF employs SOAP format for the purpose of

communication. SOAP stands for Simple Object Access Protocol.

• Policy and Binding: There are certain pre-conditions for communication with a service

and such conditions are defined by policy and binding contract. A client needs to follow

this contract. [6].

Service Runtime

The service runtime layer is just below the contracts layer. It specifies the various service

behaviors that occur during runtime. There are many types of behaviors that can undergo

configuration and come under the service runtime.

Figure 1.6 WCF Service Runtime architecture. [6].

• Throttling Behavior ─ Manages the number of messages processed.

• Error Behavior ─ Defines the result of any internal service error occurrence.

20

• Metadata Behavior ─ Specifies the availability of metadata to the outside world.

• Instance Behavior ─ Defines the number of instances that needs to be created to make

them available for the client.

• Transaction Behavior ─ Enables a change in transaction state in case of any failure.

• Dispatch Behavior ─ Controls the way by which a message gets processed by the

infrastructure of WCF.

• Concurrency Behavior ─ Controls the functions that run parallel during a client-server

communication.

• Parameter Filtering ─ Features the process of validation of parameters to a method

before it gets invoked. [6].

Messaging

This layer, composed of several channels, mainly deals with the message content to be

communicated between two endpoints. A set of channels form a channel stack and the

two major types of channels that comprise the channel stack are the following ones:

Figure 1.7 WCF Messaging architecture. [6].

• Transport Channels ─ These channels are present at the bottom of a stack and are

accountable for sending and receiving messages using transport protocols like HTTP,

TCP, Peer-to-Peer, Named Pipes, and MSMQ.

• Protocol Channels ─ Present at the top of a stack, these channels also known as layered

channels, implement wire-level protocols by modifying messages. [6].

Activation and Hosting

21

The last layer of WCF architecture is the place where services are actually hosted or

can be executed for easy access by the client. This is done by various mechanisms

discussed below in brief.

Figure 1.8 WCF Activation and Hosting architecture. [6].

• IIS ─ IIS stands for Internet Information Service. It offers a myriad of advantages using

the HTTP protocol by a service. Here, it is not required to have the host code for

activating the service code; instead, the service code gets activated automatically.

• Windows Activation Service ─ This is popularly known as WAS and comes with IIS

7.0. Both HTTP and non-HTTP based communication is possible here by using TCP or

Named Pipe protocols.

• Self-hosting ─ This is a mechanism by which a WCF service gets self-hosted as a console

application. This mechanism offers amazing flexibility in terms of choosing the desired

protocols and setting own addressing scheme.

• Windows Service ─ Hosting a WCF service with this mechanism is advantageous, as the

services then remain activated and accessible to the client due to no runtime activation.

[6].

1.7 Internet of Things

IoT (Internet of Things) is an advanced automation and analytics system which exploits

networking, sensing, big data, and artificial intelligence technology to deliver complete systems

for a product or service. These systems allow greater transparency, control, and performance

when applied to any industry or system. IoT systems have applications across industries through

their unique flexibility and ability to be suitable in any environment. They enhance data

22

collection, automation, operations, and much more through smart devices and powerful

enabling technology. [8].

1.7.1 IoT-Key Features

The most important features of IoT include artificial intelligence, connectivity, sensors,

active engagement, and small device use. A brief review of these features is given

below:

• AI – IoT essentially makes virtually anything “smart”, meaning it enhances every

aspect of life with the power of data collection, artificial intelligence algorithms, and

networks.

• Connectivity – New enabling technologies for networking, and specifically IoT

networking, mean networks are no longer exclusively tied to major providers.

Networks

can exist on a much smaller and cheaper scale while still being practical. IoT creates

these small networks between its system devices.

• Sensors – IoT loses its distinction without sensors. They act as defining instruments

which transform IoT from a standard passive network of devices into an active

system capable of real-world integration.

• Active Engagement – Much of today's interaction with connected technology

happens through passive engagement. IoT introduces a new paradigm for active

content, product, or service engagement.

• Small Devices – Devices, as predicted, have become smaller, cheaper, and more

powerful over time. IoT exploits purpose-built small devices to deliver its precision,

scalability, and versatility. [8].

23

1.7.2 IoT-Advantages

The advantages of IoT span across every area of lifestyle and business. Here is a list of some

of the advantages that IoT has to offer:

• Improved Customer Engagement – Current analytics suffer from blind-spots and

significant flaws in accuracy and as noted, engagement remains passive. IoT completely

transforms this to achieve richer and more effective engagement with audiences.

• Technology Optimization – The same technologies and data which improve the

customer experience also improves device use, and aid in more potent improvements to

technology. IoT unlocks a world of critical functional and field data.

• Reduced Waste – IoT makes areas of improvement clear. Current analytics give us

superficial insight, but IoT provides real-world information leading to more effective

management of resources.

• Enhanced Data Collection – Modern data collection suffers from its limitations and its

design for passive use. IoT breaks it out of those spaces, and places it exactly where

humans really want to go to analyze our world. It allows an accurate picture of

everything. [8].

1.7.4 IoT-Disadvantages

Though IoT delivers an impressive set of benefits, it also presents a significant set of challenges.

Here is a list of some its major issues:

• Security – IoT creates an ecosystem of constantly connected devices communicating

over networks. The system offers little control despite any security measures. These

leaves users exposed to various kinds of attackers.

• Privacy – The sophistication of IoT provides substantial personal data in extreme detail

without the user's active participation.

24

• Complexity – Some find IoT systems complicated in terms of design, deployment, and

maintenance given their use of multiple technologies and a large set of new enabling

technologies.

• Flexibility – Many are concerned about the flexibility of an IoT system to integrate

easily with another. They worry about finding themselves with several conflicting or

locked systems.

• Compliance – IoT, like any other technology in the realm of business, must comply with

regulations. Its complexity makes the issue of compliance seem incredibly challenging

when many consider standard software compliance a battle. [8].

1.7.5 IoT Networking

The definition of cloud is quite accurately listing characteristics, service models and

deployment models, however it does not refer to networks. Networks in IoT are not in fact a

characteristic but they are enablers. One key-contributor factor for the success widespread of

IoT technology is in fact due to the raise of modern, fast, reliable, low-latency and low-cost

networks. Specifically, for IoT the most common network types range between Bluetooth,

traditional Wireless Local Area Network (WAN), cellular and a new generation of Lower-

Power Wide Area Network (LPWAN). Few network technologies have a clear advantage

compared to other. WLAN and Bluetooth technology are without any doubt the most common

type of consumer network in the market at the moment. They both work in a license-free radio

frequency band; they both ensure a good bandwidth transfer rate and they both requires fairly

inexpensive receivers. Limitation comes however from the fact that they have evident range

limitation that precludes them to be the main choice for being used in extensive IoT

applications. Range in fact is limited to few tens of meters in WLAN and few meters for

Bluetooth connection. As IoT industrial applications are intended to work mostly with devices

distributed in a wide area, often with bad cellular coverage, and that would require a strict power

25

management to extend the battery lifetime, a new technology of Lower-Power Wide Area

Networking (LPWAN) is raising in IoT.

LPWAN are networks that combine technologies in order to achieve long distance, robust and

low-bit rate communications with battery operated sensors geographically located in a wide

area. [9].

26

Chapter Two

Practical Implementation

27

In this chapter we will study the main part to form the Distributed Applications that we will

use for this project.

2.1 Introduction

 Developing and deploying applications are critical aspects of providing modern organizations

with new and innovative services while helping them maintain and operate their existing

capabilities. Although there are an increasingly diverse set of application development

technologies, .NET has been the de facto standard for Windows since it was first released by

Microsoft, and with a growing ecosystem of alternative .NET implementations, it is

increasingly being chosen for a variety of cross platform workloads. [10]

Nonetheless, no application is an island, and .NET applications not only depend on

environments to execute in, but also require a plethora of additional services, including, but not

limited to, relational databases, queuing middleware, authentication and authorization services,

file storage, networking, caching, and a variety of operational monitoring and logging

services. ASP.NET adds to the .NET platform:

• Base framework for processing web requests in C# or F#

• Web-page templating syntax, for building dynamic web pages using C#

• Libraries for common web patterns, such as Model View Controller (MVC)

• Authentication system that includes libraries, a database, and template pages for

handling logins, including multi-factor authentication and external authentication with

Google, Twitter, and more.

• Editor extensions to provide syntax highlighting, code completion, and other

functionality specifically for developing web pages. [10].

28

2.2 System Overview

The entire system is designed following to the principle of modularity. As shown below (figure

2.1), the system is modularized into 3 parts: field data collection module (IOT System), service-

oriented communication module (Web Server), and user application module (ASP.NET MVC).

Each part communicates with others following rigorous use of well-defined data interfaces.

Both the field system and remote system provide welding monitoring function and data query

function. The detailed function for each part will be shown in later sections.

Figure 2.1 System Block Diagrams

29

2.3 Internet of Things System

The Smart House is the full controlled automated system designed efficiently to fit end user

requirements. The technical progress all around the universe assigned the buildings and the

houses to be equipped by Building Management System BMS that controls and monitors the

electrical devices in various environments based on Internet of Things (IoT) approach. The

electrical devices such as Air conditions, TVs, Ventilations, House Lights, and Irrigation

systems etc., need to be controlled to guaranty security developments, the benefits of the smart

house technology are colossal and can be specified as follows:

1. Energy enhancement: The house lights and the devices can be controlled and monitored

permanently such that the lights or the devices can be turned OFF depending on the

proposed website. Hence, the electrical energy would be reserved efficiently.

2. Security enhancement: The system is monitored based on webpage monitoring system

and the house can be surrounded by cameras to capture the events with respect to motion

sensors. In addition, the smart house system can contain more features like fingerprints

and key cards that maximize system security for a little bit more.

3. Accessibility: the voice commands can help the incompetent persons to control house

lights and the devices using their voice.

4. The convenience: The availability of control system designed to dominate house

gadgets and simplify the life based on this system such that all appliances such as air

conditions, TVs, multimedia players, etc. are controlled anytime throughout the house

via appropriate measurement.

5. Life time: The efficiency and the life time are expanded due to the reasons presented

above. [10].

30

2.3.1 Smart System Components

The proposed system is constructed of several elements identified as follows:

ESP8266 Node MCU

Arduino based ESP8266 Node MCU is a new microcontroller aspect that is created in

corporation with Arduino Company. This microcontroller works somewhat according to

Arduino microcontroller specifications regardless AVR processors that lead the entire module

to be compiled by Arduino IDE C++ compiler. The module is considered a complete kit due to

the specification that was added the ESP board to reduce the individual sectors that needed to

be attached to the board in order to perform specific roles. The new ESP MCU module was

configured with respect to Arduino Uno board manager and SAM core. The term 'Core' was

given to the group of software units that are needed to compile the Arduino C++ headers by

using MCU language. The creativity of ESP8266 module leads to build robust and complete

systems due to the design methodology that developed Arduino core under the domination of

ESP8266 Wi – Fi based on GitHub ESP8266 core webpage. This module is learning software

platform that combines between ESP8266 and Node MCU firmware. The MCU module that is

shown in Figure 2.2 works under the supervision of 802.11n and 802.11b networks. This means

that it can serve as an Access Point AP, Wi – Fi station or both station and AP at the same time

[10].

Figure 2.2 ESP8266 Node MCU Module

31

Node MCU Specifications & Features

• Microcontroller: Tensilica 32-bit RISC CPU Xtensa LX106

• Operating Voltage: 3.3V

• Input Voltage: 7-12V

• Digital I/O Pins (DIO): 16

• Analog Input Pins (ADC): 1

• Flash Memory: 4 MB

• SRAM: 64 KB

• Clock Speed: 80 MHz

• Small Sized module to fit smartly inside your IoT projects.

ESP8266 ESP-01 WiFi Module

The ESP8266 ESP-01 is a serial to WiFi breakout module with a built in ARM microprocessor

that has 1MB of memory and 2 GPIOs brought out to the header for connecting to

peripherals. It can be used as a serial to WiFi bridge to add WiFi capability to a project or it

can even be programmed directly and used as a little stand-alone processor. It has full TCP/IP

capability built-in. [10].

Key Features of ESP8266 ESP-01 WIFI Module

• 32-bit RISC Tensilica Xtensa LX Processor running at 80MHz

• 1MB Flash Memory

• IEEE 802.11 b/g/n WiFi

• 2 GPIO

• 3.3V Operation

Temperature – Humidity Sensor

The Temperature – Humidity sensor that is known by DHT11, reads and measures the

temperature and humidity degrees in a single distinctive model. Temperature (T) and Humidity

(H) Sensor are treated in a complex way with a calibration of digital signal output. The sensor

32

guarantees extraordinary reliability and exceptional long term stability due to the private digital

signal acquirement in the sensing technology. This module contains resistive humidity

component and an NTC temperature component, connected to a high performance 8-bit

microcontroller, offering excellent quality, fast response, anti-interference ability and cost

effectiveness. DHT sensor measures both (T) and (H) which hands the readings through

ESP8266 module with respect to Net Pie website. The module is constructed of three terminals

identified by Vcc, Data, and Gnd. The sensor acts well if linked with the digital pins of a

microcontroller. As the schematic connection demonstrated in Figure 2.3, VCC pin must be

provided by 5 V from ESP8266 MCU, the data is chosen to be connected to the digital pin D5

of ESP8266, and the Gnd terminal of the sensor is connected to the Gnd pin of ESP8266

board.[10].

Figure 2.3 Temperature – Humidity (DHT11) Module

Port Diagram

Since the proposed system is a distributed system, and for ease of connection with the main

controller, we used the ESP-01 model, which allows to connect all sensors wirelessly

Figure 2.4 Port Diagram for IoT system

33

The sensors are connected to the main controller (Node MCU) via REST API, A REST API

(also known as RESTful API) is an application programming interface (API or web API) that

conforms to the constraints of REST architectural style and allows for interaction with RESTful

web services, when we request the IP address assigned to each sensor, the information is sent

via esp-01 in Json to the Node MCU to the webserver

{"sensor":"TemperatureSensor”,"DataT":'23.100000381469727',"DataH":'68.20607'}

In the Node MCU, there is a function to read the information and put it into variables to deal

with it.

pt::read_json("example.json", loadPtreeRoot);

 pt::ptree temp ;

 std::string name ;

 std::string DateT ;

 std::string DateH ;

 name = temp.get_name ("Sensor");

 DataT = temp.get_time("DataT");

 DataH = temp.get_time("DataH");

HTTP Request Methods: GET vs POST

The Hypertext Transfer Protocol (HTTP) works as a request-response protocol between a client

and server:

• The server submits an HTTP request to the ESP8266

• The ESP returns a response to the server

• Finally, the response contains status information about the request and may also contain

the requested content.

HTTP GET

GET is used to request data from a specified resource. It is often used to get values from APIs.[].

34

For example, you can have:

GET /update-sensor?temperature=value1&humidity=value2

HTTP POST

POST is used to send data to a server to create/update a resource. For example, publish sensor

readings to a server. [].

The data sent to the server with POST is stored in the request body of the HTTP request:

POST /update-sensor HTTP/1.1 Host: example.com

api_key=api&sensor_name=name&temperature=value1&humidity=value2

ESP8266 HTTP GET: JSON Data

This method is requested via the following link https://esp8266.local/Data and return the data

in JSON format

void getData() {

 String mydataT = JSON.stringify(Temperature);

 String mydataH = JSON.stringify(Humidity);

 String input =

"{\"sensor\":\"Temperature\",\"Time\":'"+GetTime()+"',\"Date\":'"+GetData()+"',\"Data\":'"

+mydataT+","+mydataH+"'}";

 server.send(200, "text/json", ""+input+"");

}

 In addition to fetching information from sensors, there are also functions to control the ports

of the ESP via getSettings()

Void getSettings() {

 String response = "{";

 if (server.arg("LED_BUILTIN")== "HIGH"){

 digitalWrite(LED_BUILTIN, HIGH);

 }

 else if (server.arg("LED_BUILTIN")== "LOW"){

 digitalWrite(LED_BUILTIN, LOW);

 }

 response+="}";

 server.send(200, "text/json");

}

The user can control the home lighting and other applications through the dashboard page

https://esp8266.local/Data

35

Figure 2.5 Light System

In addition, there are other functions for calculating the time and date when the event occurs,

the functions of communicating with the wireless network, and the functions of building a

REST server. The entire code will be included in the appendix and explained

2.3.2 CCTV System

For the monitoring system , we use Raspberry PI 4 and the Raspberry Pi camera, first we need

to connect the ribbon to the CSI connector to the Raspberry PI board and turn the raspberry on

Once it’s on, open a terminal window. And we execute:

$ sudo raspi-config

And chooes interfacing option-p1 camera

Figure 2.6 Raspberry Pi Configuration tool

36

Creating a Livestream

Open a terminal window. And execute:

raspivid -o – -t 0 -n | cvlc -vvv stream:///dev/stdin –sout ‘#rtp{sdp=rtsp://:8554/}’

:demux=h264

This creates an RTSP stream from the Raspberry PI camera that is accessible from the local

network, we can access it through the dashboard page

Figure 2.7 CCTV system

Each camera has its own link for example camera 1 link: http://192.168.1.14:5000

2.4 MVC Application

To test the practical performance of this system, we also develop a Web MVC application based

on C# language. The website provides basic data query service and remote monitoring function.

To make sure that the monitoring function is real-time, the website establishes a remoting

connection with the web server-based .NET Remoting library. MVC model been explained in

the theoretical section and here will be the steps to build the web application.

http://192.168.1.14:5000/

37

In this project we use Visual Studio 2019 So we downloaded and installed it on the device

whose characteristics are mentioned in the following (table 2.1)

Table 2.1 Computer Characteristic

OS Name System Type Processor

Total

Physical

Memory

Local Fixed Disk

Microsoft

Windows 10

Pro

x64-based PC

Intel(R)

Core(TM) i7-

6700HQ CPU

@ 2.60GHz,

2601 Mhz,

4 Core(s), 8

Logical

Processor(s)

15.8 GB

SSD

117.7 GB

(126,406,950,912

bytes)

In Visual Studio, from the File menu, select New -> Project. You will be presented to the New

Project dialog, where you select the project type, name and location. For this tutorial, we'll use

an ASP.NET Web Application

Figure 2.8 Create new project

38

From the New ASP.NET Web Application dialog, select MVC

Figure 2.9 create MVC project

After some time, Visual Studio will create a simple MVC project using the default template,

as shown below.

Figure 2.10 simple MVC project

As we talked briefly about earlier, the Controller acts as the middleman - it will combine

your Model with a View and serve the result to the end-user. However, neither a Model nor a

View is required - the Controller can act on its own for the most basic operations, e.g. delivering

a simple text message or redirecting the user to somewhere else.

However, there are a few things we need to do before adding a new controller to our project.

39

2.4.1 Adding MVC support to a Web project

We need to add MVC support to it, to let the .NET framework and the web server know how

to process incoming requests etc. to that let’s open the Startup.cs file in Visual Studio and look

for the ConfigureServices method. It's currently empty, but let's change that by adding the

following line to it:

services.AddMvc();

The method should now look like this:

public void ConfigureServices(IServiceCollection services)

{

 services.AddMvc();

}

We also need to modify the Configure() method to make our web application handle how to

map incoming requests to your controllers so let’s modify Configure() method in

the Startup.cs file so that it looks like this:

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)

{

 if(env.IsDevelopment())

 {

 app.UseDeveloperExceptionPage();

 app.UseRouting();

 app.UseEndpoints(endpoints =>

 {

 endpoints.MapDefaultControllerRoute();

 });

}

Now we're finally ready to add our first Controller!

40

2.4.2 Add a Controller

Add our very first Controller to the project. Just right-click the new folder and select Add -

> New Item..., like this:

Figure 2.11 Add new controller

Visual Studio will offer to apply scaffolding to your new controller, which basically means that

it can be created with a range of methods for doing various stuff. However, this tutorial is all

about doing things from scratch, so you should select the one called something like "MVC

Controller - Empty" and then click the Add button.

 A new Controller will be generated for you and it will look like this:

namespace HelloMVCWorld.Controllers

{

 public class HomeController : Controller

 {
 public ActionResult Index()

 {

 return View();

 }

 }

}

This is how a default project is built. For our project, we need to modify these default codes, so

we need two controllers one for home page and other for the Login page.

For the Home Controller at first, we include the library that we need for the work

The default library and extra for the model, remoting, database, etc.

41

using System.Web.Mvc;

using System.Net;

using ADPproject.Services.Remoting;

using ADPproject.Model;

using Newtonsoft.Json;

using IotLibrary;

and in the class, there is one ActionResult method.

ActionResult is a return type of a controller method, also called an action method, and serves

as the base class for result classes. Action methods return models to views, file streams,

redirect to other controllers, or whatever is necessary for the task at hand. The controller takes

on this responsibility to connect system components, acting as a traffic cop. [11]

The Dashboard method that handles the view for the IOT web page.

public ActionResult Dashboard(sensor_v_m model)

 {

 readjson cust = remoting.Getsensor(model);

 string TmpData = cust.Data;

 Viv bewBag.tmp = TmpData;

 return View();

 }

We notice a new type of struct (readjson) it’s called models and it is a class that contains

parameters to transfer a specific type of information that the user creates within the project

specifications.

The model classes represent domain-specific data and business logic in the MVC application.

It represents the shape of the data as public properties and business logic as methods.

A controller can have one or more action methods, and each action method can return a different

view, a view is used to display data using the model class object. The Views folder contains all

the view files in the ASP.NET MVC application.

For the Dashboard view the code is included in the appendix due to its length but we will

mention the sections related to the project, The code consists of interfaces written in several

languages HTML5, CSS, JavaScript. This three-language use to make front-end framework

called Bootstrap used to create modern websites and web apps.

42

The most important sections in the Dashboard view are the model part:

@model mvc_test.Models.sensor_v_m

@using (Html.BeginForm("remotingtest", "test"))

{

 @Html.TextBoxFor(m => m.Id)

 <input type="submit" value="Search" />

}

When we enter ID of the sensor in the textbox the ID pass through the model to the controller

then to the web server over the remoting function remoting.Getsensor Which fetches the

required data of the sensor

2.5 Remoting System Component

To build the remoting system we must have the following three structures

1- (.dll) shared library that contain the remote class interface and the mobile object

2- Remoting server which builds a communication channel on a specific port and determines

the basic settings, which are the server activate object (SAO) and the client activate object

(COA)

3- Client In which a channel is defined and registered, a proxy is built and used

Now let’s talk about remoting.Getsensor struct, remoting is a class we create to connect the

ASP.NET with the Web server to exchange the data, .NET Remoting was explain in the

theoretical part.

public class remoting

 {

 static void Main(string[] args)

 {

 int i = 1;

 i++;

 HttpChannel chnl = new HttpChannel();

 ChannelServices.RegisterChannel(chnl, false);

 ICustomerManger prox =

(ICustomerManger)Activator.GetObject(typeof(ICustomerManger),

 "http://localhost:443/CustomerManger.soap");

 }

43

 }

In the remoting class in the clint side there is two section the void main, his mission creates

remote object name prox and the Http channel to the server

(http://localhost:443/CustomerManger.soap)

SOAP is a protocol to transport data in XML format from the client to the server and back.[11].

The second section is Getsensor that connects with the clint to fetch information from the

getDB method in the server side who connect to the database and show it to the user in the view

page

public static readjson Getsensor(sensor_v_m i)

 {

 readjson cust = new readjson();

 cust = prox.getDB (i.Id);

 return cust;

 }
The getDB methode:

public readjson getDB (int i)

 {

 mvctestEntities2 db = new mvctestEntities2();

 TEMP TEMP = new TEMP();

 readjson TempDATA = new readjson();

 TEMP = db.TEMPs.SingleOrDefault(x => x.Id == i);

 try

 {

 TempDATA.Data = TEMP.Data.ToString();

 TempDATA.Date = TEMP.Time;

 }

 catch(NullReferenceException)

 {

 Console.WriteLine("wait");

 }

 return TempDATA;

 }
 In the server side the remote class inherited from the interface and inherit from

MarshalByRefObjects.

MarshalByRefObject is the base class for objects that communicate across application domain

boundaries by exchanging messages using a proxy. [11]

http://localhost:443/CustomerManger.soap

44

And the void main to Initializing the connection, we use port 443 because the connection is

secure uses HTTPS powered by Transport Layer Security (TLS) we'll talk about it in the other

section. And the remote and we choose the SAO as a single tone that is, create a single

bandwidth for all users

static void Main(string[] args)

 {

 Console.WriteLine("{0}:{1}:{2}:{3}", DateTime.Now.Hour.ToString(),

 DateTime.Now.Minute.ToString(), DateTime.Now.Second.ToString(),

 DateTime.Now.Millisecond.ToString());

 Console.WriteLine("Server.Main: Server Started");

 HttpChannel chnl = new HttpChannel(443);

 ChannelServices.RegisterChannel(chnl, false);

 Console.WriteLine("{0}:{1}:{2}:{3}", DateTime.Now.Hour.ToString(),

 DateTime.Now.Minute.ToString(), DateTime.Now.Second.ToString(),

 DateTime.Now.Millisecond.ToString());

 Console.WriteLine("Server.Main: Server is listenning to port 443");

RemotingConfiguration.RegisterWellKnownServiceType(typeof(CustomerManger),

"customerManger.soap", WellKnownObjectMode.SingleCall);

 Console.WriteLine("{0}:{1}:{2}:{3}", DateTime.Now.Hour.ToString(),

 DateTime.Now.Minute.ToString(), DateTime.Now.Second.ToString(),

 DateTime.Now.Millisecond.ToString());

 Console.WriteLine("Server.Main: Server is ready to be used");

 API_to_DB.InsertData();

 Console.ReadKey();

 }

When we the project start the next screen shows that the server is running waiting for a request

from the clint

Figure 2.12 Server Start Screen

45

The clint call for request, the server create a remote object contains the data from the Database

and send it to the clint

Figure 2.13 Server Screen

The communication between the clint and server it is done through a library called

IoTLibrary.dll that we have added to the project, in this library we need to define the remote

class interface that we use which is used by the server as inheritance and used by the client to

build the activator

activator class is containing methods to create types of objects locally or remotely, or obtain

references to existing remote objects. [11]

public interface ICustomerManger

 {

 readjson getDB(int i);

 }

In the library we add the mobile object called readjson but with Serializable attribute so we can

carry data between server and clint and the getDB method from the clint server

[Serializable]

 public class readjson

 {

 public int sensor;

 public string Data;

 public string Time;

 public string Date;

 }

Serialization is the process of converting an object into a stream of bytes to store the object or

transmit it to memory, a database, or a file.

2.6 Creating a View

You can create a view for an action method directly from it by right clicking inside an action

method and select Add View...

46

The following creates a view from the Dashboerd() action method of the Home controller, as

shown below.

Figure 2.14 Add View

This will open the Add View dialogue box. It's good practice to keep the view name the same

as the action method name so that you don't have to explicitly specify the view name in the

action method while returning the view.

Select the scaffolding template. Template dropdown will show default templates available for

Create, Delete, Details, Edit, List, or Empty view. Select "Empty" template because we want to

build our own interface.

After building our interface, the final look is shown below

Figure 2.15 Dashboard Page

It shows the house temperature and humidity, the lighting control buttons, the CCTV system

buttons, the weather forecast, and other features, including household tasks, a generate report

page and various warning

47

2.7 WCF Architecture

There are four major layers that provide developers with a new service-oriented programming

model. The WCF architecture consists of the four layers explained in the theoretical section

Contracts (Layer 1): The contract layer contains various types of contracts and policy and

binding used in WCF. The various types of contracts present in the contract layer are as follows:

Service Contract: Service contract includes the operations performed by the service and

exposes them as a single unit through an interface. [12]

namespace WcfServiceLibrary

{

 [ServiceContract]

}

Data Contract: Exposes the user defined data types and classes in a WCF service. [12]

[DataContract]

 public class CompositeType

 {

 [DataMember]

 public int Id { get; set; }

 [DataMember]

 public double Data { get; set; }

 [DataMember]

 public string Data { get; set; }

 [DataMember]

 public string Time { get; set; }

 }

}

Operation Contract: Operation contract is used to expose the operations that a service can

perform. It defines the methods of a WCF service along with the parameters and return type

of the methods it call data service. [12]

[ServiceContract]

 public interface IDataService

 {

 [OperationContract]

 sensor_activity GetData(int custID);

 [OperationContract]

 List<sensor_activity> GetDataL();

 [OperationContract]

 string InsertData(sensor_activity cust);

48

 [OperationContract]

 void UpdateData(sensor_activity cust);

 [OperationContract]

 void DeleteData(int custID);

 }

Service Runtime (Layer 2): The service runtime layer contains the behavior of the service that

occurs during the execution of the service. [12]

public class DataService : IDataService

 {

 public void DeleteData(int custID) {}

 public sensor_activity GetData(int custID) {}

 public List<sensor_activity> GetDataL() {}

 public string InsertData(sensor_activity cust) {}

 public void UpdateData(sensor_activity cust1) {}

 }

The full code will be included in the appendix

Messaging (Layer 3): Using the channels, the messaging layer processes the message that is

processed and transported to a client accessing the service. [12]

Activation and Hosting (Layer 4): This layer supports the execution of services in various

environments, such as Windows Services, IIS and Windows Activation Services (WAS). A

service can either be self-hosted or hosted in the context of another application and we use the

IIS for hosting the WCF server. [12]

IIS: When a WCF service is hosted in IIS the client can access the service over the internet.

When a service is hosted in IIS, it acquires the benefits of IIS such as process lifetime

management and automatic update after configuration changes. [12]

To add website to the IIS

49

open IIS on your system. Or you can directly open IIS by typing inetmgr in run window like

below.

This will open a popup to input new website details. Input the following details in pop-up box.

• Site name: Name of website to be appeared in IIS listing.

• Application pool: Select an application pool or keep is the default to create new

application pool same name as site name.

• Physical path: Enter the location of website pages on system.

• Binding:

• Type: Select protocol to configure (eg: http or https)

• IP address: Select ip address from drop list to set dedicated ip for site or keep is the

default to use shared Ip.

• Port: Enter port on which site will be accessible for users.

• Host name: Enter you actual domain name you want to use.

• Start Website immediately: keep this box checked to start site.

Figure 2.16 Add Website Page

50

To verify configuration, you can simply access the site in a web browser.

Figure 2.17 WCFdemo Website

Next, we must run visual studio and publish the WCF on the IIS site

Figure 2.18 Publish WCF Service Page

 After we publish the WCF service we can add our services to the web server

https://tecadmin.net/wp-content/uploads/2015/04/add-website-details.png
https://tecadmin.net/wp-content/uploads/2015/04/add-website-details.png

51

as a service reference from the project solution we choose add service reference and the

following tap will show

Figure 2.19 Service Reference

Press ok this will result in a proxy class created in the web server

2.8 Create a Database

SQL Server databases are some of the most common databases in use, to create a database and

start entering your information first we need to Install the SQL Server Management Studio

software than Start up SQL Server Management Studio. If you already have a server up and

running, and have the permissions necessary to connect to it, you can enter the server address

and authentication information. If you want to create a local database, set the Database Name

to . and the authentication type to "Windows Authentication".

52

Next, we need to Locate the Database folder after the connection to the server, either local or

remote, is made, the Object Explorer window will open on the left side of the screen. At the top

of the Object Explorer tree will be the server you are connected to. if it is not expanded, click

the "+" icon next to it. Located the Databases folder.

Create a new database. Right-click on the Databases folder and select "New Database...". A

window will appear, allowing you to configure the database before creating it.

Create a table. A database can only store data if you create a structure for that data. A table

holds the information that you enter into your database, and you will need to create it before

you can proceed. Expand the new database in your Database folder, and right-click on the

Tables folder and select "New Table...".

Windows will open on the rest of the screen which will allow you to manipulate your new table.

The database for the project simple we need two table one for the sensors data and other for the

users, in the sensors data it is highly recommended that you create a Primary Key as the first

column on your table. This acts as an ID number, or record number, that will allow you to easily

recall these entries later. In the sensors data table there will be five field (ID, Data, Time, Date,

User ID) for each sensor, for every user has a ID and User ID to fetch the correct information

of each user, time and date to record the timestamp of an event and data field so the database

diagram will be in the following (figure 2.20)

Figure 2.2 Database Diagram

53

as notes in the figure there is two primary keys for the two table and one foreign key, a foreign

key is a column or group of columns in a relational database table that provides a link

between data in two tables So we can connect each data to their user .

The process of recalling the information from the database will be done through a method called

Database_Entities() and it is added in several steps

1- add new item to the project called ADO.NET entity we will choose EF designer from

database the after name it and press next the following tap will show

Figure 2.21 Database Connection string

This tap Contains connection string and database server

54

2- the next tap for choosing the tables from the database for the project

Figure 3 Database Tables

3- choose out the tables then press finish and the database will appear as follows

Figure 2.4 The Database

The information is called from the database using the following code:

var ctx = new Database_Entities()

var data = (from cust in ctx.sensor_data

 where cust.Id == custID

 select cust).SingleOrDefault();

 return data;

55

2.9 Login Page

In order to have a page dedicated to each user through which he controls the different

applications, we need to have a username and password for each user to be entered through a

page to connect to his dashboard panel therefore, a special controller was created for this page

and a ActionResult method name login

public ActionResult Login(UserModel userModel)

 {

 SecurityService securityService = new SecurityService();

 Boolean success = securityService.Authenticate(userModel);

 if (success)

 {

 return RedirectToAction("Dashboard", "Home");

 }

 else

 {

 return View();

 }

 }

In this method we have if statement prevent any user from entering the dashboard page without

a password and username through the method securityService.Authenticate(); that connect to

the database of users and find the name and password than compare them

Login page view

Figure 2.24 Login Page View

56

Chapter Three

Secure ASP.NET

57

3.1 Introduction

Security is a broad topic. Research has shown that early design of authentication and

authorization eliminates a high percentage of application vulnerabilities. Secure

communication is an integral part of securing your distributed application to protect sensitive

data, including credentials, passed to and from your application, and between application tiers.

There are many technologies used to build .NET Web applications. To build effective

application-level authentication and authorization strategies, you need to understand how to

fine-tune the various security features within each product and technology area, and how to

make them work together to provide an effective, defense-in-depth security strategy. [13].

Figure 3.1 Various technologies to secure ASP.NET

58

3.2 Designing an Authentication and Authorization Strategy

Designing an authentication and authorization strategy for distributed Web applications is a

challenging task. The good news is that proper authentication and authorization design during

the early phases of your application development helps to mitigate many top security risks. [13].

The following steps identify a process that will help you develop an authentication and

authorization strategy for your application:

1. Identify resources

2. Choose an Authorization Strategy

3. Choose the identities used for resource access

Identify Resources

Identify resources that your application needs to expose to clients. Typical resources include:

• Web Server resources such as Web pages, Web services, static resources

(HTML pages and images).

• Database resources such as per-user data or application-wide data.

• Network resources such as remote file system resources and data from directory

stores such as Active Directory. [13].

Choose an Authorization Strategy

The two basic authorization strategies are:

• Role based. Access to operations (typically methods) is secured based on the role

membership of the caller. Roles are used to partition your application's user base into

sets of users that share the same security privileges within the application; for example,

Senior Managers, Managers and Employees.

• Resource based. Individual resources are secured using Windows ACLs. [13].

59

Choose the Identities Used for Resource Access

Choose the identity or identities that should be used to access resources across the layers of

your application. This includes resources accessed from Web-based applications, and

optionally Web services, Enterprise Services and .NET Remoting components.

For the project we use SecurityDAO and SecurityService method

public class SecurityDAO

 {

 public bool FindByUser(UserModel user)

 {

 var ctx = new Database_Entities();

 if (user.Username == ctx.users.username && user.Password == ctx.users.password)

 {

 return true;

 }

 else

 {

 return false;

 }

 }

 }

}

This method validates the password and username from the database

public class SecurityService

 {

 SecurityDAO daoService = new SecurityDAO();

 public bool Authenticate(UserModel user)

 {

 return daoService.FindByUser(user);

 }

 }

Here, it verifies that the information matches the user's information In the event of a match the

page redirect from the login page to the dashboard page

3.3 Secure Communication

Many applications pass security sensitive data across networks to and from end users and

between intermediate application nodes. Sensitive data might include credentials used for

authentication, or data such as credit card numbers or bank transaction details. To guard against

unwanted information disclosure and to protect the data from unauthorized modification while

in transit, the channel between communication end points must be secured.

60

Secure communication provides the following two features:

Privacy. Privacy is concerned with ensuring that data remains private and confidential, and

cannot be viewed by eavesdroppers who may be armed with network monitoring software.

Privacy is usually provided by means of encryption.

Integrity. Secure communication channels must also ensure that data is protected from

accidental or deliberate (malicious) modification while in transit. Integrity is usually provided

by using Message Authentication Codes (MACs). [13].

In this typical deployment model, a request passes through three distinct channels. The client-

to-Web server link may be over the Internet or corporate intranet and typically uses HTTP. The

remaining two links are between internal servers within your corporate domain. Nonetheless,

all three links represent potential security concerns. Many purely intranet-based applications

convey security sensitive data between tiers; for example, HR and payroll applications that deal

with sensitive employee data.

Figure 3.2 shows how each channel can be secured by using a combination of SSL, IPsec and RPC encryption. [13].

The choice of technology depends on a number of factors including the transport protocol,

end point technologies, and environmental considerations (such as hardware, operating

system versions, firewalls, and so on).

3.3.1 Browser to Web Server

To secure sensitive data sent between a browser and Web server, use SSL/TLS is used to

establish an encrypted communication channel between client and server.

 in the following situations:

61

You are using Forms authentication and need to secure the clear text credentials submitted to

a Web server from a logon form.

You are using Forms authentication and need to secure the clear text credentials submitted to

a Web server from a logon form.

Your application passes sensitive data between the browser and Web server (and vice-versa);

for example, credit card numbers or bank account details. [13].

Enabling and Setting Up the SSL

1. In the Solution Explorer, select the application and press the F4 key.

2. Enable the SSL Enabled option and copy the SSL URL.

Figure 3.3 Enabling SSL

Now just right-click on the application and select the Properties option.

Select the Web tab from the left pane, and paste the SSL URL into the Project URL box.

62

Figure 3.4 Project Url

Select the HomeController.cs from the Controllers folder and add the following highlighted

code to edit:

namespace WebApplication1.Controllers

{

 [RequireHttps]

 public class HomeController : Controller

 {

 public ActionResult Dashboard()

 {

 return View();

 }

}

Now press Ctrl+F5 to run the application and follow the instructions to trust the self-signed

certificate generated by IIS Express.

After clicking on Yes, the Security Warning wizard opens and click Yes to install the

certificate representing the localhost.

Now, when you run the application using Internet Explorer (IE), it shows the Home Page of the

application and there is no SSL warning.

Figure 3.5 Project Home page

63

3.3.2 Web Server to Remote Application Server

The transport channel between a Web server and a remote application server should be secured

by using IPsec, SSL or RPC Encryption. The choice depends on the transport protocols,

environmental factors (operating system versions, firewalls and so on).

Enterprise Services. If your remote server hosts one or more serviced components (in an

Enterprise Services server application) and you are communicating directly with them (and as

a result using DCOM), use RPC Packet Privacy encryption.

Web Services. If your remote server hosts a Web service, you can choose between IPSec and

SSL.

You should generally use SSL because the Web service already uses the HTTP transport. SSL

also allows you to only encrypt the data sent to and from the Web service (and not all traffic

sent between the two computers). IPSec results in the encryption of all traffic sent between the

two computers.

.NET Components (using .NET Remoting). If your remote server hosts one or more .NET

components and you connect to them over the TCP channel, you can use IPSec to provide a

secure communication link. If you host the .NET components within ASP.NET, you can use

SSL (configured using IIS). [13].

Enabling Security Exception

For the server and clint side we have to change the code for the register channel

HttpChannel chnl = new HttpChannel(443);

 ChannelServices.RegisterChannel(chnl, bool ensureSecurity);

If the ensureSecurity parameter is set to true, the remoting system determines whether the

channel implements ISecurableChannel, and if so, enables encryption and digital signatures.

An exception is thrown if the channel does not implement ISecurableChannel.

64

3.3.3 Application Server to Database Server

To secure the data sent between an application server and database server, you can use SSL. Or

Windows authentication. One of the key benefits of using Windows authentication to SQL

Server is that it means that the credentials are never passed across the network.[13].

Enabling SQL Server Authentication through SQL Management Studio

To enable SQL Server Authentication

Open SQL Server Management Studio. And connect to the SQL Server.

Figure 3.6 SQL Server Management Studio

In the Object Explorer, right-click the server and click Properties.

On the Security page under Server authentication, select SQL Server and Windows

Authentication mode and then click OK.

65

Figure 3.7 Enable windows Authentication

And Windows authenticate now active.

3.4 HTTPS Server on the ESP8266 NodeMCU

To offer secured content, a server greets the client with a trusted certificate, issued by a known

authority. The certificate has a limited time validity and must be renewed from time to time.

we'll generate a SSL certificate and use it on ESP8266 web server. [13].

Certificate and key

For ESP8266 compatibility, the certificate must use SHA256 and the key length must be either

512 or 1024 bits. A 512 bits RSA key will make ESP8266 respond faster, but it is considered

weak by modern browsers. For better security, use 1024 bits RSA key. The trusted CA should

give you both the certificate and the private RSA key. We intend to use OpenSSL to generate

the certificate and the private RSA key. Getting OpenSSL on Linux is easy since most

distributions already have it installed and you can find it in software repositories

https://www.dundas.com/support/images/dbi/docs/install/sql/ServerAuth_TurnOnSQLServerAuthenticationMode.png
https://www.dundas.com/support/images/dbi/docs/install/sql/ServerAuth_TurnOnSQLServerAuthenticationMode.png

66

Launch openssl on the command line, from the folder where you want certificate and key to be

generated. It is possible to generate both key and certificate using a single command:

req -x509 -newkey rsa:1024 -sha256 -keyout key.txt -out cert.txt -days 365 -nodes -subj "/C

=RO/ST=B/L=Bucharest/O=OneTransistor [RO]/OU=OneTransistor/CN=esp8266.local" -a

ddext subjectAltName=DNS:esp8266.local

the rsa:1024 specifies key length in bits, while in the second approach, last argument

of genrsa is used for this. The -days parameter specifies certificate validity starting from the

generation time. [13].

the parameters in the key.txt file and the certificate in cert.txt.

• C - country, short name

• ST - state or province

• L - locality or city

• O - organization

• OU - organizational unit

• CN - common name (domain name)

The subjectAltName parameter must contain the domain name(s) where your server is

accessible. It can specify also IP addresses like

this: subjectAltName=DNS:esp8266.local,IP:192.168.1.184.

The Web Server

The key and certificate must be pasted into the sketch:

namespace BearSSL {

using ESP8266WebServerSecure =

esp8266webserver::ESP8266WebServerTemplate<WiFiServerSecure>;

static const char serverCert[] PROGMEM = R"EOF(

-----BEGIN CERTIFICATE-----

-----END CERTIFICATE-----

67

)EOF";

static const char serverKey[] PROGMEM = R"EOF(

-----BEGIN PRIVATE KEY-----

-----END PRIVATE KEY-----

)EOF";

The certificate must be imported into the web server system.

68

Chapter Four

Tests and Results

69

4.1 Introduction

Centralized systems may have helped build the internet, but they have important disadvantages.

That’s what decentralized and distributed systems try to address.

4.2 The Importance of Different Systems

The centralized vs decentralized vs distributed systems debate is relevant to both individuals

and organizations. It affects almost everyone who uses the web. It’s at the core of the

development and evolution of networks, financial systems, companies, apps, web services, and

more.

While all these systems can function effectively, some are more stable and secure than others

by design. Systems can be very small, interconnecting only a few devices and a handful of

users. Or they can be immense and span countries and continents. Either way, they face the

same challenges: fault tolerance, maintenance costs, and scalability.[14].

4.3 Distributed Systems and Internet of Things

The topic of “Distributed Systems and Internet of Things” represents a vision in which the

Internet extends into the real world embracing everyday objects. Physical items are no longer

disconnected from the virtual world, but can be remotely controlled and can act as physical

access points to Internet services. The back end of these physical access points is a

geographically distributed system which integrates such diverse technologies as pervasive,

mobile and Cloud computing. This topic arises from synergically merging IoT and distributed

computing.[14].

70

4.4 Why use .NET?

A few benefits of using .NET and WCF Web API instead of other web services frameworks.

using .NET and WCF for the web services framework can ease many pains, such as having to

create the clients and authorizing the clients that can communicate.

The following table describes the major features of each technology.

Table 4.1 features of ASP.NET and WCF.[15].

WCF ASP.NET

Enables building services that support

multiple transport protocols (HTTP,

TCP, UDP, and custom transports) and

allows switching between them.

HTTP only. First-class programming model for

HTTP. More suitable for access from various

browsers, mobile devices etc enabling wide

reach.

Enables building services that support

multiple encodings (Text, MTOM, and

Binary) of the same message type and

allows switching between them.

Enables building Web APIs that support wide

variety of media types including XML, JSON

etc.

Supports building services with WS-*

standards like Reliable Messaging,

Transactions, Message Security.

Uses basic protocol and formats such as HTTP,

WebSockets, SSL, JSON, and XML. There is

no support for higher level protocols such as

Reliable Messaging or Transactions.

Supports Request-Reply, One Way, and

Duplex message exchange patterns.

HTTP is request/response but additional

patterns can be supported through SignalR and

WebSockets integration.

WCF SOAP services can be described

in WSDL allowing automated tools to

There is a variety of ways to describe a Web

API ranging from auto-generated HTML help

https://github.com/SignalR/SignalR

71

generate client proxies even for services

with complex schemas.

page describing snippets to structured metadata

for OData integrated APIs.

4.5 Performance

The performance of WCF and ASP.NET is good. Neither framework causes any problems in

this case. Let's consider a simple API call.

public string Get() {

 // Return the list of the data

 return dataList;

 }

Performance depends on certain factors:

• CPU and RAM resources available for the programs to run; ASP.NET Web API can be

hosted in a program.

• Network bandwidth and throughput.

• Other services running in the background.

• Time required by data engines to return the data, or to load the data from the memory

or files.

The rest of the stuff is performed by the ASP.NET Web API to serialize the data to JSON format

and send the data over the network. Most of the times, serialization and deserialization of data

can also take time; Luckily, ASP.NET Web API uses the Newtonsoft.Json API to perform data

deserialization and serialization actions and which are notably fast.

Figure 4.1 Json.NET Performance. [15].

72

Even the entry level and outgoing level doors of ASP.NET Web API are fine tuned to not give

any performance factor a hard time. This is what makes ASP.NET Web API a very powerful

framework to create web services on the top of HTTP protocol. [15].

4.6 Conclusion

In this work, the up-to-date web technologies were utilized to render the whole home

automation system a distributed type with the processes as services. The cloud portion of the

distributed system involves the web applications integrated with data management and

repositories as well as communication interfaces. We induced great flexibility in the automation

operations through HTML5 based web applications and services development for intuitive GUI

web applications. Similarly, modular design concept was adopted in the embedded hardware

development for better functionality and greater reliability. A robust data communication

protocol to ensure seamless communication between the individual applications and systems

was deployed. Relatively, a high level of security by the virtue of the robust web service security

protocol deployed was realized. Overall, the system provides a cost-effective solution to home

automation as the costs of a dedicated public IP address and a high-end computer, as present

mostly in other solutions, are removed.

4.7 Future Work

We intend to further improve the performance by incorporating a higher layer communication

protocol, Message Queuing Telemetry Transport (MQTT), an extremely simple and lightweight

machine-to-machine, messaging protocol built on WebSocket for constrained devices and low-

bandwidth, high-latency or unreliable networks

73

74

Reference:

[1]-Higinio Mora, &María Teresa, &David Gil 2018, Collaborative Working Architecture for

IoT-Based Applications', Department of Computer Science Technology and Computation,

University of Alicante,

[2]-Kuang-Chi Kao. 2018. Design and development of an IoT-based web application for an

intelligent remote SCADA system in of Electrical and Electronic Engineering, Hsinchu,

Taiwan.

[3]-Richard, M. A. & others (2005). DISTRIBUTED SYSTEMS ARCHITECTURE

A Middleware Approach. San Francisco. [accessed 29 March 2021]

[4]-Mario Szpuszta, & Ingo Rammer. Advanced .NET Remoting, Second Edition, Retrieved

from https://vdocuments.site/advanced-net-remoting.html.

[5]-Bert Vanhooff, & Davy Preuveneers, Yolande Berbers. (2006). '.NET Remoting and Web

Services:' A Lightweight Bridge between the .NET Compact and Full Framework. Department

of Computer Science, Belgium. [accessed 17 March 2021]

[6]-Tutorials Point. (2018). LEARN WCF Windows Communication Foundation. Tutorials

Point (I) Pvt. Ltd.

[7]-Shad Sluiter (2020). What is WCF Windows Communication Foundation. Available

at: https://youtu.be/azfA_n_2wXo (Accessed: 16 March 2021).

 [8]-Tutorials Point 2020, India, accessed 20 March 2021,

<https://www.tutorialspoint.com/internet_of_things.htm>.

[9]-Andrea Finardi (4 June 2018). IoT Simulations with Cisco Packet Tracer

[10]-Dlnya Abdulahad Aziz 2019, ‘Design of Smart House System based on Webserver

Architecture Control, accessed 17 July 2021.

https://vdocuments.site/advanced-net-remoting.html
https://www.youtube.com/channel/UCUSqKFDbRaaWQTaMN3r4Pbg

75

[11]-C# Corner, Ksasikumar, accessed 15 Jun 2021, < https://www.c-

sharpcorner.com/article/net-remoting/>

[12]-Gray, L 2018, ‘Advances in Computer Science Research’, International Symposium on

Communication Engineering & Computer Science, volume 86, no. 2.

[13]-One Transistor, Cornelius, accessed 20 July 2021, <

https://www.onetransistor.eu/2019/04/https-server-on-esp8266-nodemcu.html>

[14]-Berty, Manfred Touron, accessed 20 July 2021, < https://berty.tech/blog/decentralized-

distributed-centralized/>

[15]-Hack.guides, Afzaal Ahmad Zeeshan, accessed 22 July 2021, Using ASP.NET Web API

for web services for IoT, >pskb-prod.herokuapp.com)>

https://www.c-sharpcorner.com/article/net-remoting/
https://www.c-sharpcorner.com/article/net-remoting/
https://www.onetransistor.eu/2019/04/https-server-on-esp8266-nodemcu.html
https://berty.tech/blog/decentralized-distributed-centralized/
https://berty.tech/blog/decentralized-distributed-centralized/
https://pskb-prod.herokuapp.com/microsoft-net/using-asp-net-web-api-for-web-services-for-iot
https://pskb-prod.herokuapp.com/microsoft-net/using-asp-net-web-api-for-web-services-for-iot

 جامعة اليرموك الخاصة

 كلية هندسة المعلوماتية والاتصالات

 قسم هندسة المعلومات والاتصالات

بناء نظام موزع للتعامل مع البيانات في تطبيقات

 إنترنت الأشياء

 اعداد الطلاب

 الله محمد عبد عمار الماضي

 الجدي زمد منار بومح

 المشرفين

وسيم الجنيديد. محمد خالد شاهين د.

 م. رامي عباس

لثاني الفصل ا

2020-2021

